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Optimal control problems for objects described by systems of elliptic differential equations are considered. The controls are
coefficients of leading terms in the equations and are constrained by equalities and inequalities. This formulation covers the
optimal design problem for mechanical systems consisting of two materials with given volumes. The objective function is a functional
which depends on the ¢quations of state and their first derivatives. The main result is the construction of necessary Weierstrass
conditions on inclusions of domains of one material in a domain of the other, which enables one to construct an approximation
to the optimal solution. The case if a single n-dimensional elliptic equation is investigated in detail, for which a necessary Weierstrass
condition is obtained when the inclusion is an n-dimensional ellipsoid. The application of a necessary Weierstrass condition to
two optimal design problems is considered: the minimization of the work of external influences and the maximization of the
torsional rigidity of a prismatic rod.

The traditional approach to the solution of optimal design problems consists of extending the set of
admissible controls} within which the optimal solution exists. In most cases such a solution is of purely
theoretical interest, and can be used to estimate the optimal value of the functional. Attempting to
approximate it by using some kind of regular solution is impracticable because in the approximation
one has to deal with a problem of high dimension.

This paper focuses on the problem of obtaining a necessary Weierstrass condition for a strong
minimum, which, together with the necessary conditions for a weak minimum, can be used to obtain
a progressive improvement in the connectedness of the domains of inclusion of one material in the
other [1].

1. STATEMENT OF THE PROBLEM

Let R” and R™ be n- and m-dimensional Cartesian vector spaces, respectively, i.e. real vector spaces
of ordered sets of real numbersx = (x;,...,x,) and u = (uy, . . ., u,,). Scalar products and norms in
these spaces are defined in the usual manner

0,y ) =ay =0 0", (0, 0) = uy, lul = (1, 1)'?

Here and below the subscripts i and j take values from 1 to n, and the subscripts k, / take values from
1to m. Repeated i orj indices in a product imply summation from 1 to », and repeated & or / subscripts
imply summation from 1 to m.

We denote by Q C R” a regular domam with piecewise-smooth boundary I [2]. We assume that a
vector function f = (f‘(z) s fa®) € LXQ) is ?eclﬁed on Q, together with a vector-function F =
(F1(x), . . . , Fu(x)) € LY(T§) on T C T, where L%(Q), LX(Ts) are Hilbert spaces of vector functions
with scalar produc1 s and norms

172
(&)= [figadx, |f] = [ [IFi% de
Q Q Q

Tr

1/2
(F,G)= [FGydx, |F| =( [IF? dr)
rp l"F
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In the domain Q we consider vector-functions u = (u1(x), . . . , Unm(x)) € H'(2) where H(Q) is the
Sobolev space of vector functions with scalar product and norm

(,0) = [ (0, + 1 0 el = (u, )"
Q

containing the subspace

V(Q) = {ue H(Qlux) =0, xe T,)

where I, CT, I, NTr=dand mes T, > 0.
In V(Q) we define the symmetric bilinear form 4 (i, v) = @y ;V; in which the coefficients a;;; possess
the symmetry properties a;y = @ = agx = ajix, and which satisfies the ellipticity condition

Alw, w) = allwll2, o >0 (1.1)
We define u € V() to be the solution of the integral identity

[[Au,w)—(f,w)dx — [(F,w)dl' =0, Vwe V(Q) (1.2)
Q Tr
If A(u, w) satisfies condition (1.1), and f € L¥Q), F € L*(T), then a unique solution u € V(Q) of
the integral identity (1.2) exists [3].
We will now consider the formulation of the optimal design problem.
Suppose that the coefficients a,%.), and a,%), are specified in measurable subspaces Q; C Q and Q, C
Q which satisfy the conditions Q; N Q, = J, Q, U Q, = Q and

mes Q) =A;, mes Q) =Ay =mes Q- A (1.3)

It is required to solve the problem

infJ(u), J(u)= | @u,0 (u))dx+ | @u))dx+ [@(u)dl (1.4)
Q Q, Tp
where u satisfies the integral identity
| Aj(u,w)dx+ | Ay(u,w)dx — J(f,w)dx~ [(F,w)dl' =0 (1.5)
Vwe V(Q)

which is obtained from (1.2) and in which A(u, w) = ajge w, ;. The functions ¢ and y in (1.4) are assumed
to be differentiable  times with respect to all their arguments, and 6®)(u) is the matrix with components
o) = afdu; (s = 1,2).

The sets , and Q, can have a fairly complicated structure and in certain cases can be found using
averaging methods (cf. the publication cited in the footnote). The core of the analysis performed below
is the determination of the sensitivity of functional (1.4) to inclusions of domains with coefficients agfj),
in the domain Q; and domains with coefficients a%), in the domain Q,.

We shall now assume that in the domain Q there are two regular domains £, and Q, filled with the
first and second materials respectively, that I'y, is the boundary which separates the domains Q, and
Q,, and that r = (r, . . ., r,;) is the unit vector normal to it pointing from domain Q, into domain Q,.
We shall further assume that in the domains Q, and €, the solution u to the integral identity (1.5) is a
twice-differentiable vector-function with respect to the arguments x;. Then, using the identity

(s) — (A(8) (s)
Qipjthe iW1,j = (aikjluk,iwl )i — ikt ;W1

we obtain from (1.5) an elliptic boundary-value problem in the form of a system of differential equations
with boundary conditions

(). (s
ag’) + f=0, xeQ,, s=1,2
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u =0, xel,, rjog.‘,‘c)=Fk, xelp
ray =0, xeT=T,\(T, UT;UT,)

ug) = uw?, qog-}c):ryoﬁ), xely; Ty =0T, u=uY, xeQ,

where I'y and I'; are respectively the boundaries of the domains Q; and Q,.

2. NECESSARY OPTIMALITY CONDITIONS

We shall assume that there is an optimal solution such that the two domains Qf and Q3% with common
boundary I',(T'f; = I'f N I'3) are filled with the first and second materials, respectively.

We construct an extended functional I(x) in which the left-hand side of the identity (1.5) has been
subtracted from the functional J(x), and compute its first variation

OF =y, (W, 0u) + ¥, (W, du) + | i)lﬁukdl“+ J [Al(u',w)—Az(u*,w)]Srdl"+
Tr ou; Ar

+ ] (A W)= A", w)8rdT + [ [A (", w) = Ay (", w)]8rdT 2.1)
nAr S

w8 = [ |22 (" 6 )b, + a‘(",, ", 60’6 (Bu)+ A, (w, 5u) |dx,
ar | 9 90 )

Ah‘.(u*,w) = (p(u*,S(“)(u'))— A_‘(u*, w), s=1,2

Here u* is the optimal solution of the problem, du is the variation of u*, and ér is a variation of the
boundary T'}, satisfying the condition [1]

jordT+ [ drdT+ | 3rdT' =0 22)
I, Iy Al rAr

which follows from condition (1.3).
In (2.1) we put w = v*, where v* satisfies the integral identity

XV W)+, (0 W)+ | -al(u‘)w,‘dl" =0, Ywe V(Q) (2.3)
rF auk
Then, using du € V(Q), we obtain the inequality

8= | [A@W 0 ]-A,w 0" PBrdT+ [ [Ay(u",0" 1= Ay, v 18rdl +
nAr AT

+ (8@ 07]= Ay ("0 J8rdT = 0 (2.4)
N2

which must be satisfied by any variations of the boundary I'},, I'f N T, '} N I satisfying equality (2.2).
It has been shown [Z2] that the conditions

A 0 )~ Ay 0)<E xell AT
A0 =AW 0 )2 xel, AT
A V)= A0 )=G, xely, 2.5)

are necessary and sufficient for (2.2) and (2.4) to be satisfied.

3. NECESSARY WEIERSTRASS CONDITIONS

We will analyse a variation of the functional in which a small domain of the first material is included
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in the domain of the second material, and vice versa.
We take Vxg € Q1(Vxg € Q3) and a convex domain Qy(n) all of whose geometrical dimensions can
vary in proportion to 1. Then

mes Qq(N) = N" mes Qo(Qq = Qo(1)) (3.1)

In order for condition (1.3) to remain satisfied, it is necessary to vary the boundary I't, by an amount
r(y,m),y € I't; [2], where r(y, 1) < 0 in the case of an inclusion of the first material in the second, and
r(y,m) > 0in the case of an inclusion of the second material in the first.

In this case functional (1.4) can be reduced to the form

I= [ [y(uy—(F,w)ldl' - [(f,w)dx+ [ A (u,w)dx+
Tr Q Q

+[Ay(uwydet | [A,(u,w)- Ay (u,w)ldx (3.2)
Q, Qy(n)

The plus sign in front of the last integral corresponds to the inclusion of the first material in the second,
and the minus sign to the inclusion of the second material in the first.
In order to satisfy condition (1 3) the function r(y, ) must be proportlonal to n", hence & =

.. 8" = 0. The variations 8u, . . . , 8"u are given by integral 1dent1tles in which the external actions are
functions proportional to &, . 8"r and hence 8u = ... =8"lu = 0 [1].
Substituting w = v* into functional (3.2) and scquentlally computing the variations 87, . . . , §"I, we
obtain
d=..=1U=0

"I = “Al(u 1)) A2(u \))]8" 4 ( I [A (u '0) Az(u D)]dx]
s d‘l] Qu(m) n

=0

Using the necessary conditions 8"/ = 0 and (2.5) we find

dn
dn" )Im)[A 1@, 07~ Ay (u”,07)]dx = £n!lmesQ, (3.3)

The minus sign is taken for points xy € Qf and the plus sign for x, € Q3.

In the left-hand side of inequality (3.3) the integral is evaluated over the domain Qy(n) (an n-dimen-
sional volume proportional to n") of an expression which depends on the vector function u, which is a
perturbation of the solution to the integral identity (1.5) that has been produced by the inclusion Qy(n).

We will obtain integral identities for determining . To do this we consider an inclusion Qg(n) of the
second material in the domain Q1. Subtracting from the integral identity for this case the integral identity
for the optimal solution u* and transforming it, we find

*j A’ —u" wyde+ (@O -u" wydx = [ o "(xo)) - 0\ (1" (xgw,dT,
Q\Q(m Q <o

Vx, € Q) (34)

It is of course 1mposs1ble to determine u exactly in the integral identity (3.4). However, when
1 — 0 we have u — «° for which the integral identity

JA® —u" @)dx+ [A, @ -u",0)dx = [ (6" (x5))- 0P (u" (x)) 00T,
R7\Qy Q Yy

VXO (S Q; (3-5)

holds, where the r; are the components of the external unit normal to the boundary 9, of the domain
Qo

Performing similar constructions for an inclusion Qgy(n) of the first material into the second, we obtain
an mtegral identity differing from (3.5) by the replacement of the superscript 1 by the superscript 2
and vice versa.
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Using the latter two identities together with inequality (3.3), we finally obtain the inequalities

A,(uo,'oo)—Az(uo,u‘)SC, er;
A0~ A% 0=, xeQ;) (3.6)
u' = 1)'(x0), v = u‘(xo), u® =u°(x0)

Inequalities (3.6) are called necessary Weierstrass conditions. The first must be satisfied by any x; €
1 and the second for any xy € Q3.

4. NECESSARY WEIERSTRASS CONDITIONS FOR AN ELLIPSOIDAL
INCLUSION (m = 1)

For the case when m = 1 the bilinear form A(u, v) = a;u ;v ; can be reduced to the form
A(u, V) = huv; (4.1)

by a change of coordinates.

Below we shall assume that the Cartesian system of coordinates x; has been chosen from the start so
that the bilinear form A(u, 1))) has the form g4 .1), and also k3 > h;. The components of the vectors ¢
are given by the relations 0' () = hyu,, 0(2 (1) = hyu; and the necessary Weierstrass conditions (3.6)
are the inequalitics

Ahu
Ahu

-

-, 0P W)+ o’ 6V (') = £

0
? -0 6P+, 6V’ ={ (4.2)

._;

where Ak = h, — hy.
In this case the solution u° of the integral identities (3.5) and (3.6) are known [4]

WW=u+ KE“)x,-u;(xo ), s=1,2

k(D = <Ay, + M), P = A (hy + Ahp)™ (4.3)
0(a} +p)(a} +p)...(a +p)

1
ui=ial.-.a”

where the superscript 1 in parentheses corresponds to an inclusion of the second material in the first
and the 2 corresponds to the first material in the second.

Without loss of generality we can assume that the semi-axes of the ellipsoid have been ordered as
follows:

a=1ag=a>.a=>0 44)

It then follows from (4.3) that 0 < p; < py <...j, < 1, the last inequality being obtained from an
estimate of the integrand in integral (4.3)

2, N3z =1

<B =

Ha 20 a +p)

Analysis shows that k() is a2 monotonically decreasing, and x@(p) is a monotonically increasing
function of p when 0 < p < 1 (Fig. 1).

We will consider the case when function ¢ = ¢(x). Then inequalities (4.2) take the respective forms

Ahu: :<§1Ahxm :., oneQ;
Ahu'v),

=+ axPuv], VapeQ, (4.5)
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(where u* = u*(xg), V* = v*(xp)). We denote by o; the angles between Vu*(xo)—the gradient of the
function u* at the point x;—and the axes of the n-dimensional ellipsoid, by B; the angles between Vu*(xo)
—the gradient of the function v* at the point x;—and the axes of the n-dimensional ellipsoid, and by
¥ the angle between the gradients Vu*(xo) and Vu*(xg). Then inequalities (4.5) can be represented in
the form

AWV IV Icosy < { - @, (a;,B;,a;)
ARV VY lcosy < § - @, (0, B;.a;) (4.6)
@, = AIVu IV Ik cosar; cosB;, s=1,2

Inequalities (4.6) must be satisfied by all o, B;, 4; satisfying the equalities

cos’a; =1, f‘, cos’ B; =1, i cosa,; cosf; =cosy “4.7

=1 i=1

M

H

and inequalities (4.4).
We will solve the two problems

n'}’ax ¢] ((l,-,Bi,'a,-), min ¢2(ai,Bi,a’-)

;9,6 8 d;
for oy, B;, a; satisfying (4.7) and (4.4). Then inequalities (4.6) hold for all &;;, B;, a; satisfying conditions

(4.7) and (4.4). The maximum of the function @,(cy;, B;, 4;) and the minimum of the function ®,(c; B;,
a;) are reached at the points (Fig. 2)

ay=..=a,,=1,a,=0, a;=-B,; =72
WL=Pr=...=0, =B, =72, 0, =R2—7/2, By=T/2+ Y2 4.8)
and are given by
@} = ;' AR2IVE IV Isin? (Y1 2), @3 =k ARIVW 11V Isin®(Y/2)
Analysis of relations (4.8) shows that the extremal values of the functions ®, and ®, are reached on

an n-dimensional oblate spheroid the normal to which coincides with the x,, axis. The necessary Weier-
strass conditions finally take the form
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ARIVUItVV" Icos Y < §— by AR IVU" IV Isin? (v / 2) 4.9

ARIVE IV Icosy = + AT AR VL IV Isin2 (7 / 2)
where u* = u*(xg), v* = vV*(xg).
Example 1. Consider the problem of minimizing the work of f and F through a displacement w. In this case ¢

= fu, y = Fu. Analysis of integral identities (1.5) and (2.3) shows that y = 0, and the necessary Weierstrass conditions
consequently have the simple form

AWV P <, x0€Qp; ARVU 22T, x Q) (4.10)

We put xy = y_ =y — Or in the first inequality and xp =y} = y, + Ori in the second, where 7 is the unit normal to
the boundary I'f;, and y € I'f;. We also note that { = h; | Vu* I 0+) | —hy | Vu* () 2 Analysis of inequalities
(4.10) shows that they can bc satlsﬁed if

u'(y_ ) ar=0u"(y,)/3r=0, Vyel},

Example 2. Consider the problem of maximizing the torsional rigidity of a rod composed of two materials, one
flexible and one stiff, with shear moduli G; and G, respectively. In this case @ = -2u, f = 2, hy = pGy, hy = pG),
where the quantity p is proportional to the torque apphed to the rod. It follows from mtcgral identities (1.5) and
(2.3) that v* = y*. In thiscase y =1, { = -A | Vu*(y) [* fory € Ty, and inequalities (4.9) acquire the form

h]h‘z IVu (XO )'2 ?c, VXO € Q].
. . (4.11)
WbV (xg)P <8, Vxg €

We put xg = y_ =y ~ Or in the first inequality and xp = y, = y + Or in the second, where y € T and r is the unit
normal to I'f;. Then from (4.11) one can obtain the inequality

by (2hy — IV (y_ 2= B3V (3, 2
by 2y = )V (3, )P = WY (y_ )

from which it follows that they can only be satisfied in the case when

Wiy )=uy(y,)=0, i=1...n
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